68 research outputs found

    Phenomenology of unusual top partners in composite Higgs models

    Full text link
    We consider a particular composite Higgs model which contains SU(3) color octet top partners besides the usually considered triplet representations. Moreover, color singlet top partners are present as well which can in principle serve as dark matter candidates. We investigate the LHC phenomenology of these unusual top partners. Some of these states could be confused with gluinos predicted in supersymmetric models at first glance.Comment: 29 pages, 10 figures + appendice

    A similarity study of I/O traces via string kernels

    Get PDF
    Understanding I/O for data-intense applications is the foundation for the optimization of these applications. The classification of the applications according to the expressed I/O access pattern eases the analysis. An access pattern can be seen as fingerprint of an application. In this paper, we address the classification of traces. Firstly, we convert them first into a weighted string representation. Due to the fact that string objects can be easily compared using kernel methods, we explore their use for fingerprinting I/O patterns. To improve accuracy, we propose a novel string kernel function called kast2 spectrum kernel. The similarity matrices, obtained after applying the mentioned kernel over a set of examples from a real application, were analyzed using kernel principal component analysis and hierarchical clustering. The evaluation showed that two out of four I/O access pattern groups were completely identified, while the other two groups conformed a single cluster due to the intrinsic similarity of their members. The proposed strategy can be promisingly applied to other similarity problems involving tree-like structured data

    Comparison of Clang Abstract Syntax Trees using string kernels

    Get PDF
    Abstract Syntax Trees (ASTs) are intermediate representations widely used by compiler frameworks. One of their strengths is that they can be used to determine the similarity among a collection of programs. In this paper we propose a novel comparison method that converts ASTs into weighted strings in order to get similarity matrices and quantify the level of correlation among codes. To evaluate the approach, we leveraged the corresponding strings derived from the Clang ASTs of a set of 100 source code examples written in C. Our kernel and two other string kernels from the literature were used to obtain similarity matrices among those examples. Next, we used Hierarchical Clustering to visualize the results. Our solution was able to identify different clusters conformed by examples that shared similar semantics. We demonstrated that the proposed strategy can be promisingly applied to similarity problems involving trees or strings

    An analytical methodology to derive power models based on hardware and software metrics

    Get PDF
    The use of models to predict the power consumption of a system is an appealing alternative to wattmeters since they avoid hardware costs and are easy to deploy. In this paper, we present an analytical methodology to build models with a reduced number of features in order to estimate power consumption at node level. We aim at building simple power models by performing a per-component analysis (CPU, memory, network, I/O) through the execution of four standard benchmarks. While they are executed, information from all the available hardware counters and resource utilization metrics provided by the system is collected. Based on correlations among the recorded metrics and their correlation with the instantaneous power, our methodology allows (i) to identify the significant metrics; and (ii) to assign weights to the selected metrics in order to derive reduced models. The reduction also aims at extracting models that are based on a set of hardware counters and utilization metrics that can be obtained simultaneously and, thus, can be gathered and computed on-line. The utility of our procedure is validated using real-life applications on an Intel Sandy Bridge architecture

    Uncovering doubly charged scalars with dominant three-body decays using machine learning

    Full text link
    We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to W+tbˉW^+ t\bar b in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.Comment: 16 pages, 14 figures, 2 technical appendice

    Phenomenological aspects of composite Higgs scenarios: exotic scalars and vector-like quarks

    Full text link
    Composite Higgs models usually contain additional pseudo Nambu Goldstone bosons and vector-like quarks. We discuss various aspects related to their LHC phenomenology and provide summary plots of exclusion limits using currently available information. We also describe a general parametrisation implemented in a software for Monte Carlo simulations and study the SU(5)/SO(5) scenario as a concrete example.Comment: contribution to Snowmass 2021. V2: Fig. 4 update

    Did the Milky Way dwarf satellites enter the halo as a group?

    Full text link
    The dwarf satellite galaxies in the Local Group are generally considered to be hosted in dark matter subhalos that survived the disruptive processes during infall onto their host halos. It has recently been argued that if the majority of satellites entered the Milky Way halo in a group rather than individually, this could explain the spatial and dynamical peculiarities of its satellite distribution. Such groups were identified as dwarf galaxy associations that are found in the nearby Universe. In this paper we address the question whether galaxies in such associations can be the progenitors of the Milky Way satellite galaxies. We find that the dwarf associations are much more extended than would be required to explain the disk-like distribution of the Milky Way and Andromeda satellite galaxies. We further identify a possible minor filamentary structure, perpendicular to the supergalactic plane, in which the dwarf associations are located, that might be related to the direction of infall of a progenitor galaxy of the Milky Way satellites, if they are of tidal origin.Comment: acc Ap

    Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    Get PDF
    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project) and from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1)

    Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Get PDF
    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data
    corecore